

Rehabilitation and Cathodic Protection of Reinforced Concrete Seawater Cooling Towers

NACE -JUBAIL SECTION JUBAIL Intercontinental Hotel, September 27, 2010

Dr. Zia Chaudhary MATERIALS & CORROSION SECTION SABIC TECHNOLOGY CENTER-JUBAIL

Sharing our futures

SUMMARY OF PRESENTATION CONTENTS

- **A.** Case History of a Rehabilitation of Seawater Cooling Tower (CT)
 - Condition Survey of CT
 - Diagnosis & Selection of Repair Method
 - CP System Design & Installation
 - CP System Performance Assessment
- B. Development of a User Friendly Remote Monitoring Software. (Time Permitting)
- C. Installation of Cathodic Prevention Systems in new Seawater Cooling Towers. (Time Permitting)

CONDITION SURVEY OF COOLING TOWER

COOLING TOWER: *STRUCTURE DETAILS & PROBLEM*

A. SUPER STRUCTURE B. SUPPORT STRUCTURE

- 1) Footing & Pedestals (155 nos.)
- 2) Columns (155 nos.)
- 3) Beams (274 nos.)
- 4) Slab Panels (600 nos.)

COMMISSIONED: 2004

PROBLEM:

Leaks in HDPE liner in 2005, contaminated slab panels, beams, and columns, which caused corrosion of steel reinforcement and that led to cracking of these concrete elements in 2007.

Contamination of Slab Panels: 2005 Survey

Contamination of Beams & Corbels: 2005 Survey

Contamination of Beams at Periphery : 2005 Survey

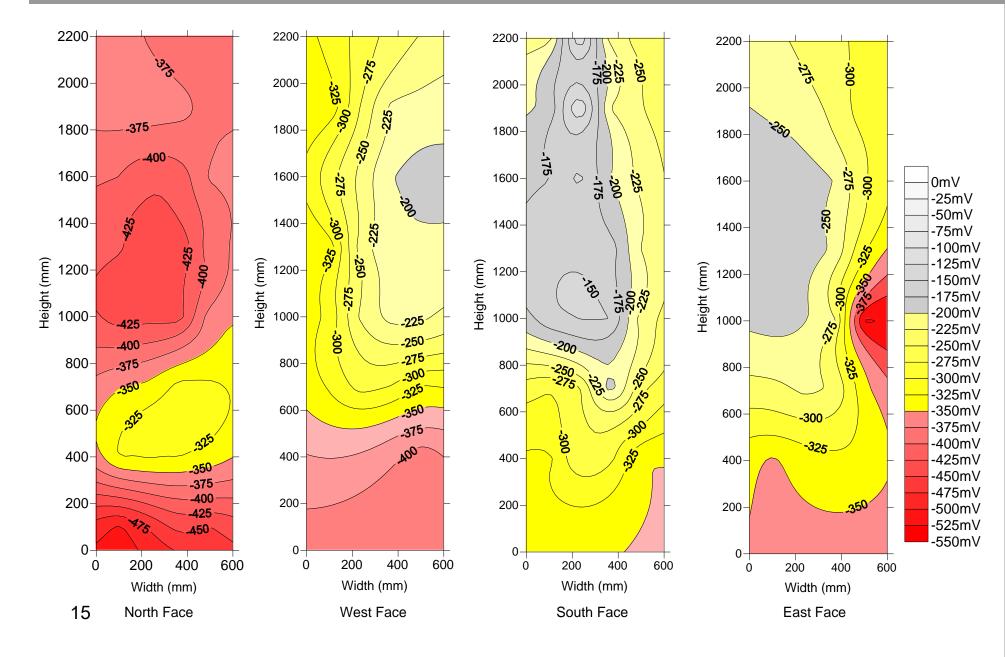
Cracking of Slab Panels: 2007 Survey

Cracking of Slab Panels: 2007 Survey

Cracking & Spalling of Slab Panels: 2007 Survey

Cracking of Beams: 2007 Survey

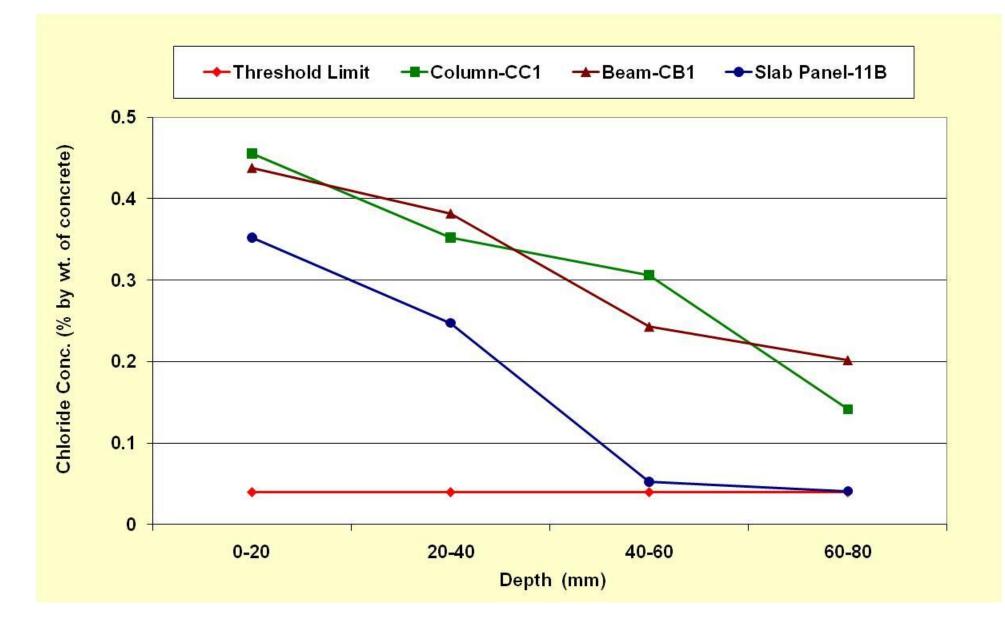
Cracking of Columns: 2007 Survey


SUMMARY OF CONDITION SURVEY RESULTS

Investigation	Observation			
Visual Inspection	 2005 Survey: 97 Rust spots, 176 SW leaks and 184 seepage spots. No Cracks were noted. 2007 Survey: 217(37%)Slab panels, 61 Beams (22%), and 44 Columns (28%) were found cracked. 			

SUMMARY OF CONDITION SURVEY RESULTS

Investigation	Observation				
Steel Half-Cell Potentials (HCP)	44% data showed 95% corrosion risk. 40% data showed 50% corrosion risk.				
Corrosion Rate (CR)	60% results showed "High" CR >1.0 uA/cm ² 20% results showed "moderate to high" CR i.e., 0.5 to 1.0 uA/cm ² .				


POTENTIAL MAP OF COLUMN#2.

SUMMARY OF CONDITION SURVEY RESULTS

Investigation	Observation				
<section-header><section-header></section-header></section-header>	Slab panels: 0.051% by wt. of concrete Beams: 0.18% by wt. of concrete Columns: 0.13% by wt. of concrete 2 to 4 times > threshold limit of 0.04%, by wt. of concrete.				

CHLORIDE PROFILES: Column, Beam, & Slab

DIAGNOSIS &

SELECTION OF REPAIR METHOD

DIAGNOSIS

- Cracking and delamination of the slab panels, beams and columns resulted due to chloride-induced corrosion of the reinforcing steel.
- Reinforcing steel underneath the sound concrete is actively corroding across the entire support structure.
- Ongoing corrosion of the reinforcing steel would eventually result in further cracking and delamination of concrete (if not arrested in the near future) which would lead to loss of serviceability and integrity of the structure.

SELECTION OF REPAIR METHOD

REPAIR OPTION	PROS & CONS			
Local Patch Repairs & Coating	 Pros: Economical Only cracked & delaminated areas repaired. Cons: Short-term solution. Does not control and/or eliminate root cause of problem. Enhance corrosion in close areas. 			

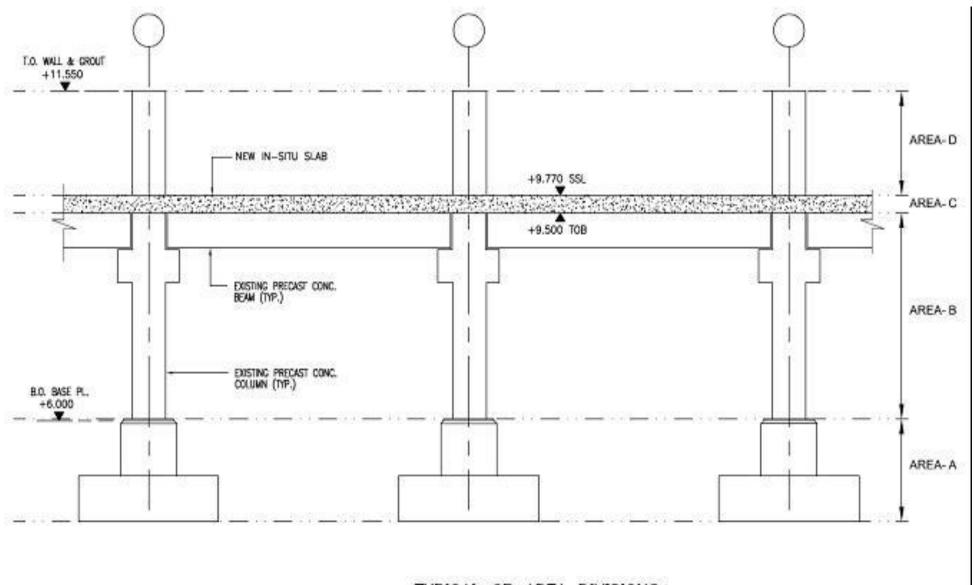
SELECTION OF REPAIR METHOD

REPAIR OPTION	PROS & CONS				
	 Pros: Provides durable & long service life. No maintenance is required. 				
Re-Skinning or Conventional	Cons: ≻ Expensive,				
Repair	 Require extensive concrete breakout for Chloride removal & temporary supports during repairs. 				
21	> May cause operational constraints.				

SELECTION OF REPAIR METHOD

REPAIR OPTION	PROS & CONS				
<section-header></section-header>	 Pros: Only cracked & delaminated areas repaired. Long term solution. <u>Control root cause of the problem.</u> Proven long track record. No operational constraints. Cons: Require electrical continuity, AC power, system monitoring and adjustment. Relatively costly. 				

SELECTED REPAIR METHOD

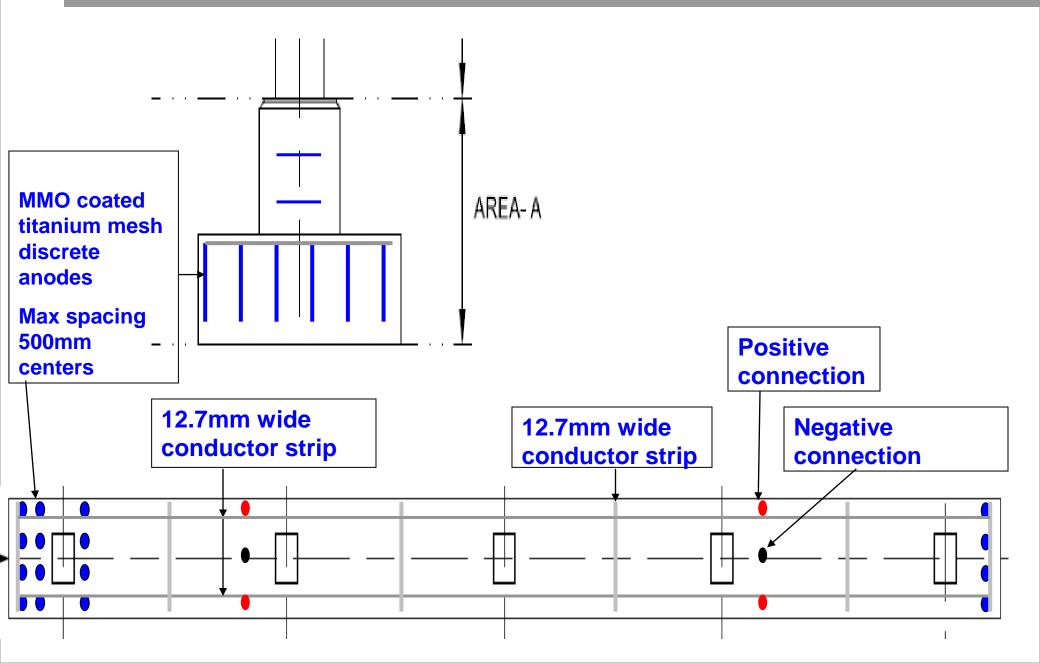

Concrete Element	Repair Approach			
Slab Panels	A. Remove all pre-cast slab panels. B. Design and cast in-situ new slab with fewer joints and built-in ICCP (prevention) system.			
Beams, Columns, Corbels, & Foundations	 A. Remove all loose and delaminated concrete and repair using cementitious repair materials. B. Install ICCP system. 			

CATHODIC PROTECTION SYSTEM DESIGN

INSTALLATION

COOLING TOWER CATHODIC PROTECTION AREAS

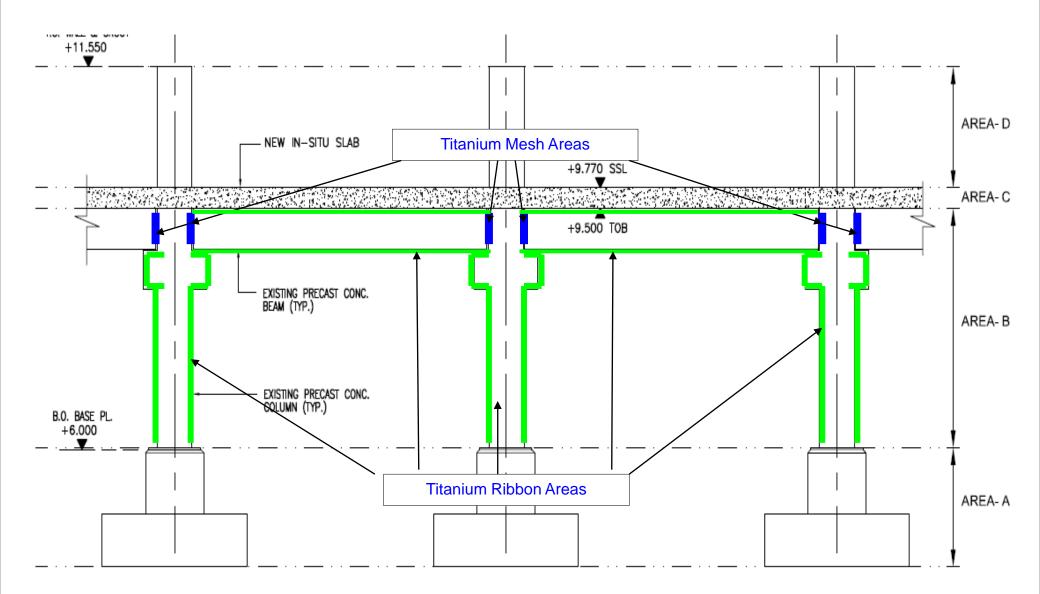
TYPICAL CP AREA DIVISIONS

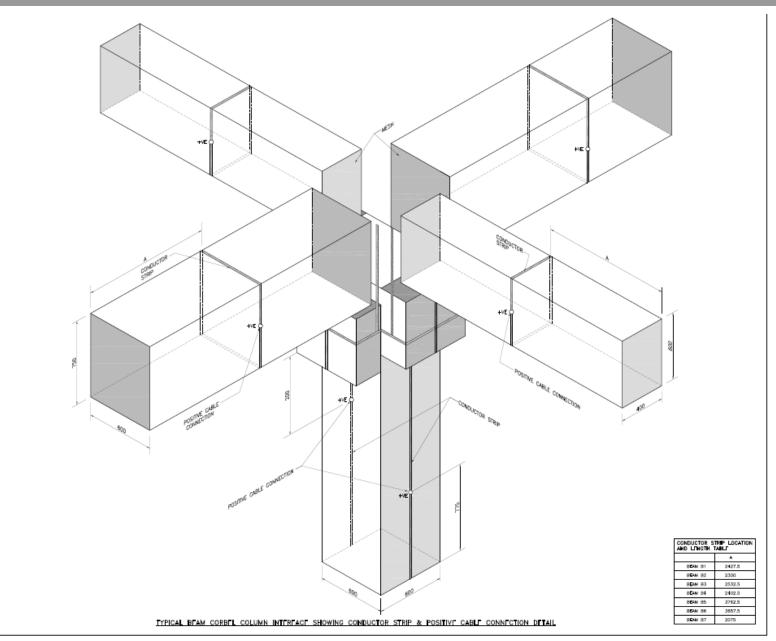

CP DESIGN CRITERIA & ANODE SYSTEM

Area	Structural Element	Environment	Design Current Density	Anode System
A	Foundation, Footings and Pedestals	Buried and coated	10 mA/m ²	Mixed metal oxide (MMO) coated Ti mesh discrete anodes.
В	Columns, Corbels, Beams	Atmospherically exposed	20 mA/m ²	
С	New slab & Retaining wall	Coated and submerged, & Atmospherically exposed	5 mA/m ²	MMO coated Ti mesh ribbon anode.
D 26	Columns above new slab	Coated and submerged	20 mA/m ²	

SUMMARY OF CP DESIGN DETAILS

Area	Zones (Nos.)	Average Zone Size (m ²)	Average Current Required (A / zone)	TR Capacity (A / zone)	Reference Electrodes (Nos./zone)
A	8	1358	9.50	12	10
В	21	360	9.66	12	8
С	16	575	8	10	6
D	3	348	7.5	12	6


AREA A: *TYPICAL ANODE & CONNECTIONS LAYOUT*


AREA A: ANODE & CONDUCTOR BAR INSTALLATION

AREA B: *TYPICAL ANODE LAYOUT ON BEAMS & COLUMNS*

AREA B: TYPICAL ANODE LAYOUT ON BEAMS & COLUMNS

3

AREA B: BEAM & COLUMN REPAIRS


AREA B: BEAM & COLUMN REPAIRS

AREA B: *MESH RIBBON INSTALLATION ON COLUMN*

AREA B: *MESH RIBBON INSTALLATION ON CORBEL*

AREA C & D: *MESH RIBBON INSTALLATION*

AREA C & D: *MESH RIBBON INSTALLATION*

AREA C & D: FINAL FINISH: SLAB & COLUMNS

CP SYSTEM PERFORMANCE ASSESSMENT

CP ASSESSMENT CRITERIA

- An instant-off steel potential more negative than -720 mV with respect to Ag/AgCl.
- A potential decay of at least 100mV from instant-off steel potential over a period of 24 hours.

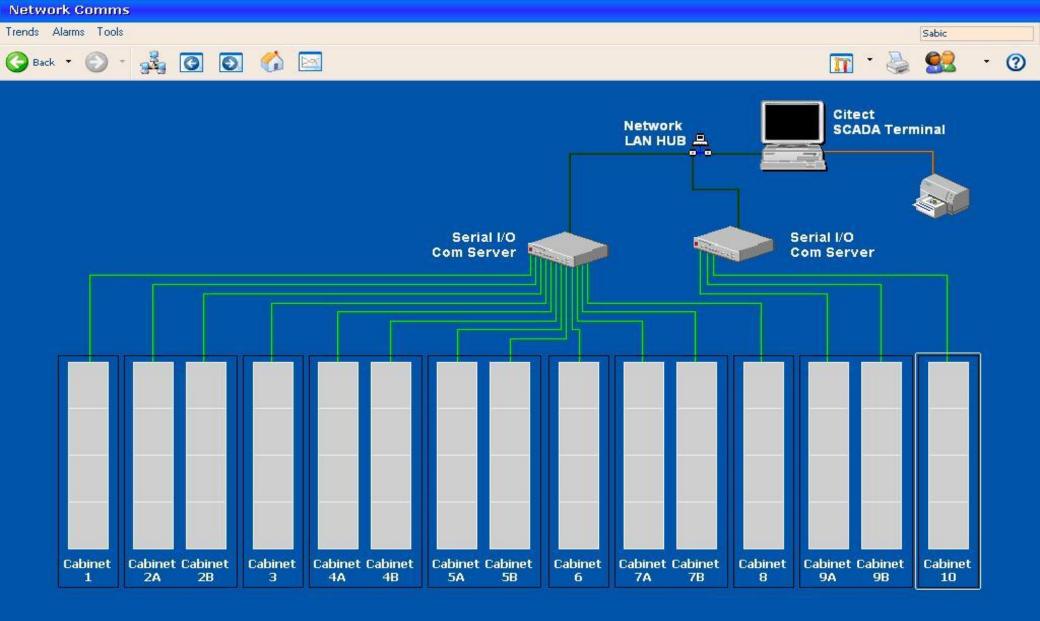
Performance Assessment after 6-12 Months operation

Zone Area	No. of Zones Nos.	Applied CD Range mA/m ²	Total REs Nos.	RE with ≥100 mV Decay or -720 mV Instant Off Steel Potential Nos.	RE with 50-99 mV Decay Nos.	Criteria Compliance %
A	8	3-6	82	82	0	100
В	21	15-18	168	147	19	88
С	16	2.5-3.5	94	84	10	90
D	3	10-14	18	15	2	83
Total	48		362	328	31	91

CONCLUSIONS

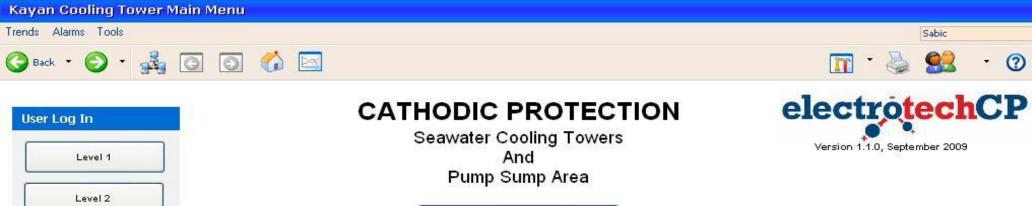
- Cathodic Protection repair method was opted, as it offers durable, long-term & economical solution for rehabilitation of the structure.
- The CP system of all 48 zones has been successfully installed and commissioned.
- Monitoring data (after 6-12 months of system operation) has shown criteria compliance at 328 (91%) monitoring locations out of the total of 364.
- This shows that the CP system is affording required protection to all protected areas of the CT.

REMOTE MONITORING SYSTEM


REMOTE MONITORING SYSTEM

> RMS consists of:

- > SOFTWARE
- HARDWARE
 - > AC/DC Converters
 - > Relays
 - Constant Current Source Cards
 - > Analog/Digital converters
 - > Current Interrupters
 - > Micro-processors & Key Pad
 - > Master Control Unit (MCU)
 - > Industrial computer
 - > Server Communication Server
 - > Printer
- > The system is controlled by a PC Main Control Unit (MCU-PC) that is running a SCADA Interface.
- > Network is controlled by MCU-PC when it is powered.
- When MCU-PC is off, each cabinet will continue to operate independently and can be controlled by the Micro Control



REMOTE MONITORING SOFTWARE

> The main features of the RMS are as follows:

- Read and set operating parameters
- Monitor each zone in real time
- Daily Log of Current-On, & Instant-off steel potentials at set time intervals
- Conduct global depolarization tests at set intervals
- Retrieve & analyze depolarization data
- Provide criteria compliance summary of all zones
- DC output status screen
- Alarm enabling
- Set high/low limits

User	Log In	
	Level 1	
	Level 2	
	Level 3	
	SABIC	

Plant Overview

Power Supplies & Monitoring

Sabic

0

÷.

Criteria Compliance

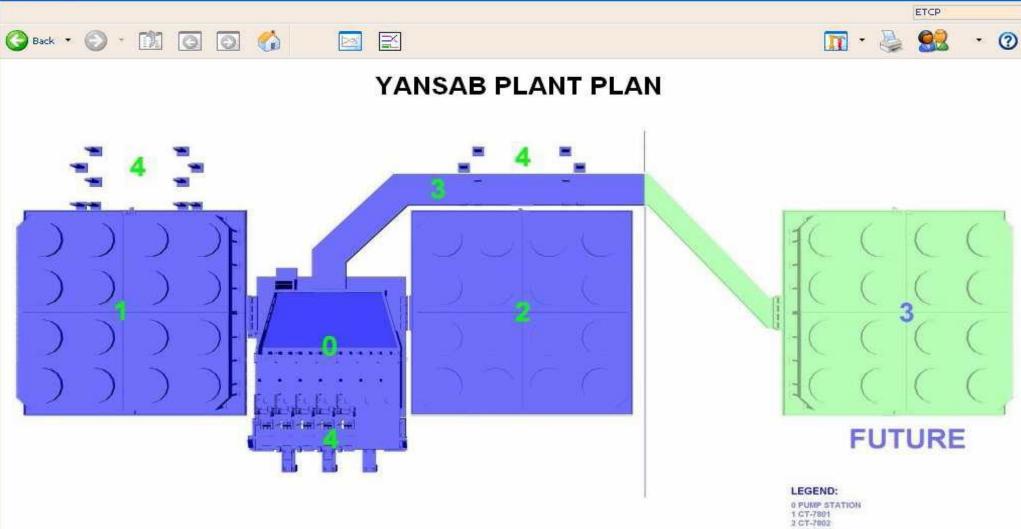
Network Comms

Depolarisation

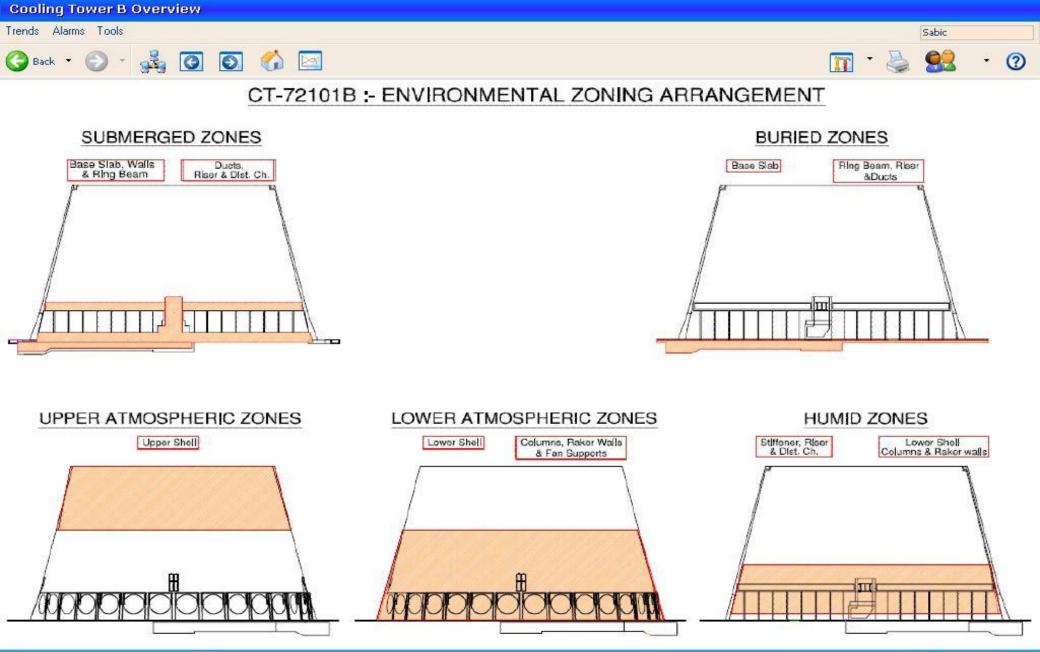
System Settings

Software Shutdown

Log Out



Power Supply Control Page



3 CT-7803 4 AUXILLIARIES

	13:31:20	23/07/2008	Current Limit	2000 0122	305	electrotechCP
						15:55:18
🧶 🌆 🖓 🚱 🖉	13 81 20					Wed Jul 23 2008

Trends Alarms Tools

Sabic

• ⑦

📅 · 🎍 🕵 ·

🚱 Back 🔹 🐑 - 💑 💽 💽 🏠 🖂

ZONE	Design Current (mA)	Max Current (mA)	Op Current (mA)	Op Voltage (V)	Op Curr Density (mA/m*)	REF	RE1 (mV)	RE2 (mV)	RE3 (mV)	RE4 (mV)	RE5 (mV)	RE6 (mV)	RE7 (mV)	RE8 (mV)	RE9 (mV)	RE10 (mV)	RE11 (mV)	RE12 (mV)	RE13 (mV)	RE14 (mV)	RE15 (mV)	RE16 (mV)
		Zones ase Sla	b, Colu	mn and	Raker	Walls	s, Partit	ion and	Wall S	liffener	5											
8W	3908	6520	0	0.0	3	ON OFF	0 0	00	00	00	0	0	0 0	0 0								
9W	3579	6319	0	0.0	0	ON OFF	0 0	00	0	00	0	0	0	00	00							
10W	2067	4453	O	0.0	5	ON OFF	0	0	0	0	0	0	0									
11W	4626	8203	0	0.0	0	ON OFF	0 0	0	0	0	0	0	0	0	0	0	0	0				
12W	3908	6520	0	0.0	0	ON OFF	0 0	0	0	0	0	0	0									
13W	2087	4489	0	0.0	5	ON OFF	0 0	0	0	00	0	0	0		2							
14W	3995	6734	0	0.0	0	ON OFF	0	0 0	0	0	0	0	0	0	0	0	0	0			Î	
15W	4000	7671	0	0.0	0	ON OFF	0	0 0	0	00	0	0	0	0	0	0						
16W	3908	6520	0	0.0	3	ON OFF	0	0	0	0	0	0	0									
17W	1965	4272	0	0.0	0	ON OFF	0	0 0	0	0	0	0	0									
18W	3632	6405	0	0.0	3	ON OFF	0	0 0	0	0	0	0	0	0	0 0	0 0						
19W	4425	7728	0	0.0	0	ON OFF	0 0	0	0	0	0	0	0	0	0 0	0	0	0				
20W	4617	7164	0	0.0	2	ON OFF	0	0 0	0 0	0	0	0	0									
21W	4170	7481	0	0.0	0	ON OFF	0	0	0	0	0	0	0 0	0	0 0	0	0	0	0	0	8	
23W	4421	8003	0	0.0	2	ON OFF	0	0	0	00	0	0	0	0	0	0	0	0	0	0	i i i	

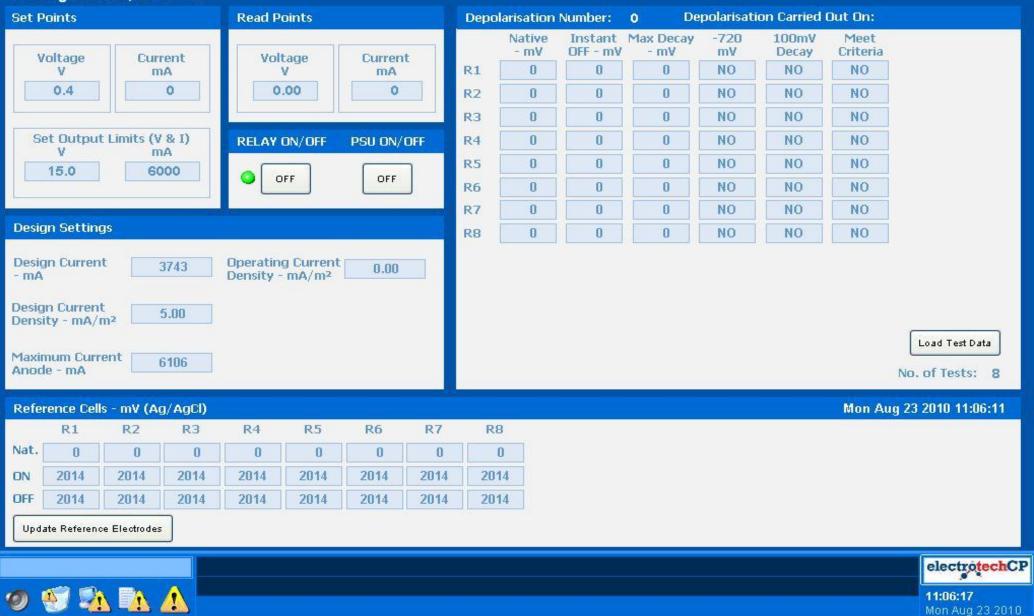
Previous Page

Update

electrotechCP

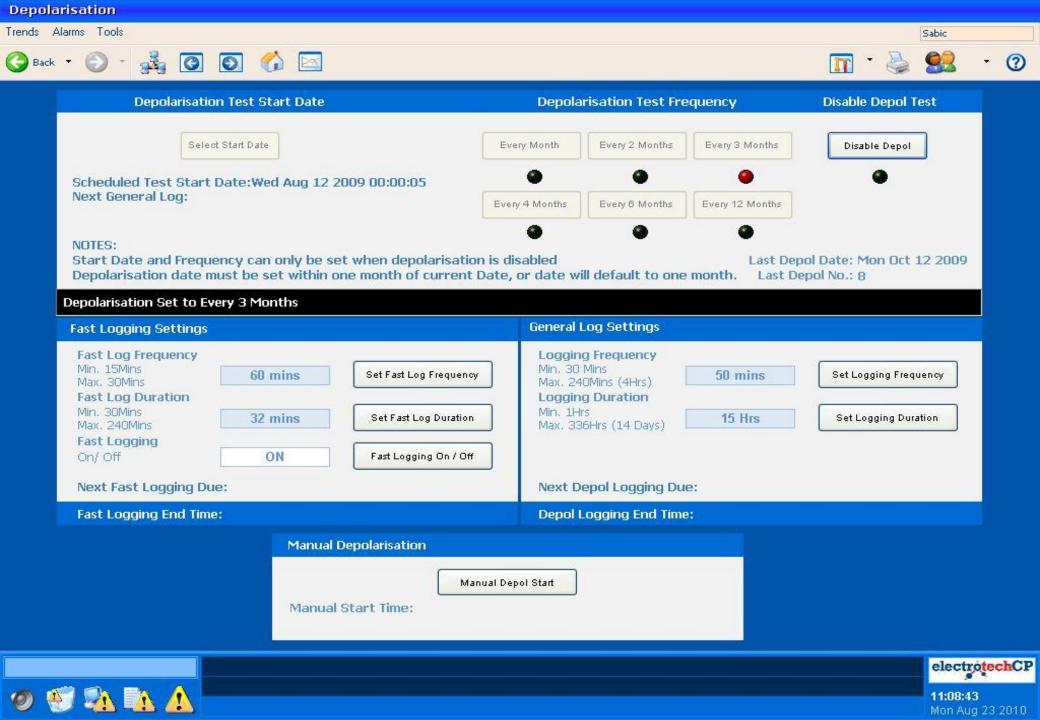
Mon Aug 23 2010

11:05:32


COOLING TOWER & ZONE 1W

Trends Alarms Tools

Cooling Tower A, Zone - 1W



CRITERIA	COMPLI	IANCE SUM	MARY PA	GE 1											
Trends Alarn	ns Tools												Sat	pic	
🕝 Back 🔹	•	3	0	<u>Par</u>								•	🎍 💈	- 🔝	0
E.	Depolarisa	tion Number		De	polarisation	Carried O	ut On: Su	n Sep 13 2	009						
Area	R 1	R 2	R 3	R 4	R 5	R 6	R 7	R 8	R 9	R 10	R 11	R 12	R 13	R 14	
CTA_1A	NO	NO	NO	NO	NO	NO	NO								
CTA_2A	NO	NO	NO	NO	NO	NO	NO								
СТА_ЗА	NO	NO	NO	NO	NO	NO	NO								
CTA_4A	NO	NO	NO	NO	NO	NO	NO								
CTA_5A	NO	NO	NO	NO	NO	NO	NO								
CTA_6A	NO	NO	NO	NO	NO	NO	NO								
CTA_7A	NO	NO	NO	NO	NO	NO	NO								
CTA_8A	NO	NO	NO	NO	NO	NO	NO								
CTA_9A	NO	NO	NO	NO	NO	NO	NO								
CTA_10A	NO	NO	NO	NO	NO	NO	NO								
CTA_11A	NO	NO	NO	NO	NO	NO	NO								
CTA_12A	NO	NO	NO	NO	NO	NO	NO								
CTA_13A	NO	NO	NO	NO	NO	NO	NO								
CTA_14A	NO	NO	NO	NO	NO	NO	NO								
CTA_15A	NO	NO	NO	NO	NO	NO	NO								
CTA_16A	NO	NO	NO	NO	NO	NO	NO								
CTA_17A	NO	NO	NO	NO	NO	NO	NO								
CTA_18A	NO	NO	NO	NO	NO	NO	NO								
CTA_19A	NO	NO	NO	NO	NO	NO	NO								
CTA_20A	NO	NO	NO	NO	NO	NO	NO								
CTA_21A	NO	NO	NO	NO	NO	NO	NO								
CTA_22A	NO	NO	NO	NO	NO	NO	NO								

Next Page

11:08:13 Mon Aug 23 2010

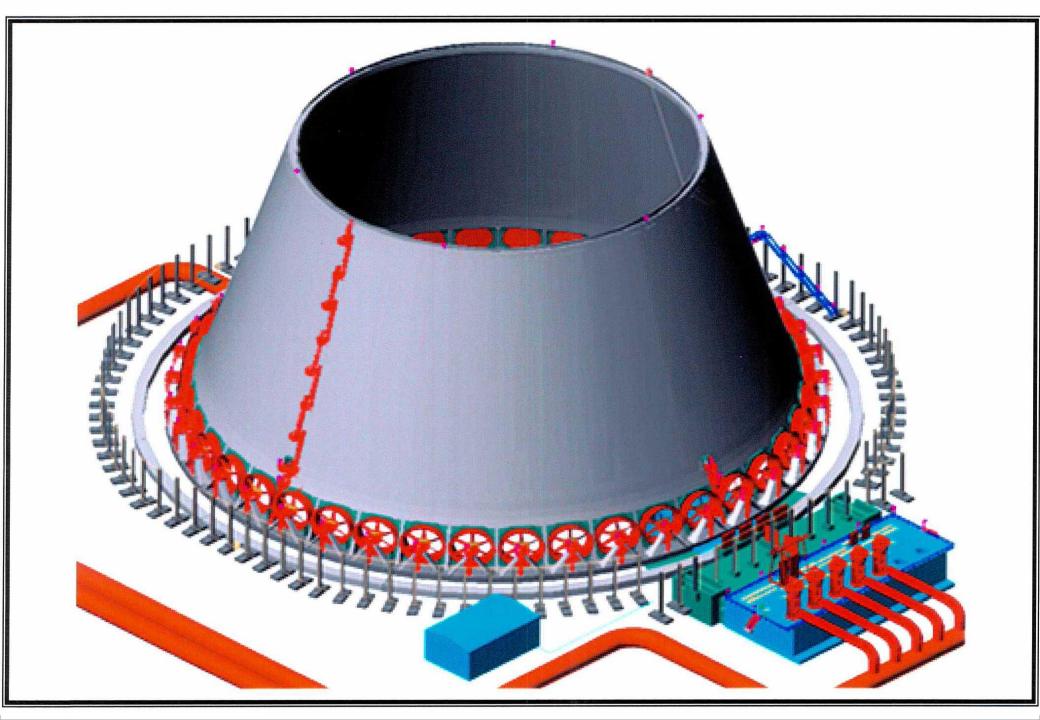
System Settings

Trends Alarms Tools

Sabic

• ⑦

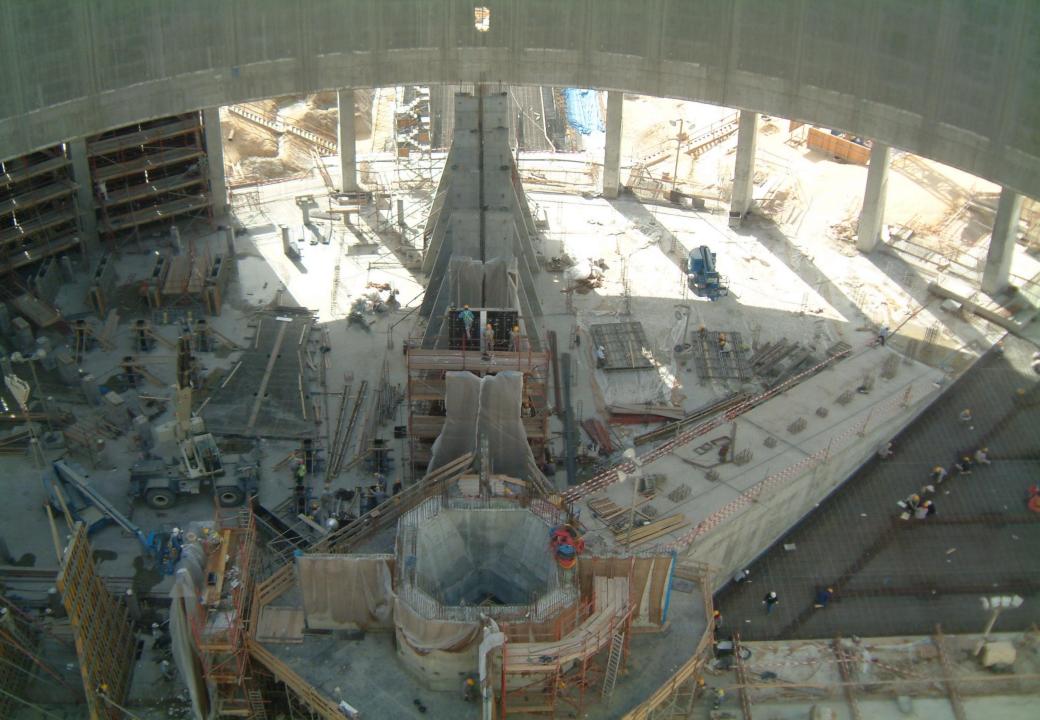
electrotechCP


Mon Aug 23 2010

11:09:06

ack 🔹 🔘 🔹 💑					
Instant Off Settings	Minimum: 500 Millise	conds Maximum: 2000 Milliseconds	Report Status		
Cabinet 1	500.00	Change Instant Off		STATUS	NEXT DUE
	C00.00		Daily Log:	Enabled	Tue Aug 24 2010 06:00:00
Cabinet 2A	500.00	Change Instant Off	Depolarisation:	Enabled	Wed Apr 20 2011 07:00:00
Cabinet 2B	500.00	Change Instant Off	Depol Fast Log:	Disabled	Wed Apr 20 2011 07:00:00
Cabinet 3	500.00	Change Instant Off	Depol Fast Log End:	Disabled	Wed Apr 20 2011 07:00:00
Cobiner o			Depol Normal Log:	Disabled	Wed Apr 20 2011 07:00:00
Cabinet 4A	500.00	Change Instant Off	Depol Long Log:	Enabled	Wed Apr 20 2011 07:00:00
Cabinet 4B	500.00	Change Instant Off	Depol Log End:	Disabled	Wed Apr 20 2011 07:00:00
Cabinet 5A	500.00	Change Instant Off	Environmental:	Enabled	Mon Aug 23 2010 12:00:00
Cabinet 5B	500.00	Change Instant Off	Daily Log Settings	Minimum: 60Mi	nutes Maximum: 4320 Minutes
Cabinet 6	500.00	Change Instant Off	Log Interval Time Remaining	1440 mins	1440 = 2880 = 2880 = 4320 =
Cabinet 7A	500.00	Change Instant Off		Manual Log	Logging Of
Cabinet 7B	500.00	Change Instant Off			
Cabinet 8	500.00	Change Instant Off	Daily Logging Enabled		
Cabinet 9A	500.00	Change Instant Off	Set Logout Time to	1 Minuto	1 Minute
Cabinet 98	500.00	Change Instant Off	Set Logout Time to		10 Minutes
Cabinet 10	500.00	Change Instant Off	Set Logout Time to	60 Minutes	
File Copy			Turn Logout Time OF		Turn Logout Time Off
Insert USB Memory § Set Drive to: D	Stick to Copy Log Files	Copy All Logging Data To USB		ut Idle Time 🔽	10 Min.

INSTALLATION OF **CP SYSTEMS** IN **NEW SEAWATER COOLING TOWERS**



THANKS