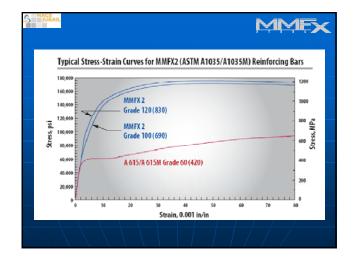





	Different?	
nical Comp	osition	
.ow-carbon		
Chromium a	alloy	
ŝ	Chemical Constituents (Weight	%)
Element	ASTM A1035/A1035M Maximum Amount *	Typical MMFX2
Carbon	0.15%	0.08%
Chromium	8 to 10.9%	9%
Manganese	1.5%	0.5%
Nitrogen	0.05%	0.05%
Phosphorus	0.035%	0.035
Sulfur	0.045%	0.045%
Silicon	0.50%	0.50%

The MMFX 2 (ASTM A1035) ADVANTAGES


Mechanical Properties

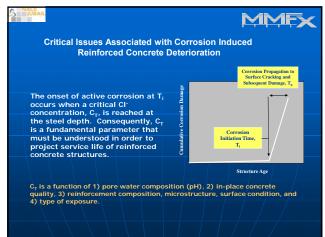
5

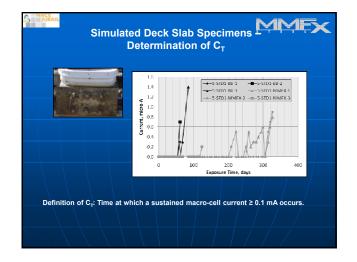
Tensile Properties of MMFX 2 (ASTM A1035/A1035M) Reinforcing Bars

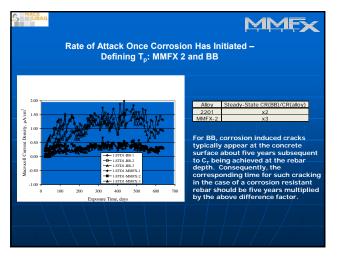
fensile Properties Requirements	Grade 100 [690] Grade 120 [830			
Tensile strength, min, psi [MPa]	150 000 [1030]	150 000 [1030]		
Yield strength (0.2% offste, min, psi [MPa]	100 000 [690]	120 000 [830]		
Stress corresponding to an extension under load of 0.0035 in./in (0.0035), min, psi [MPa] Elongation in 8 in. [203.2 mm], min.%; Bar Designation No.	80 000 [550]	90 000 [620]		
3 through 11 [10 through 36]	7	7		
14, 18, [43, 57]	6			

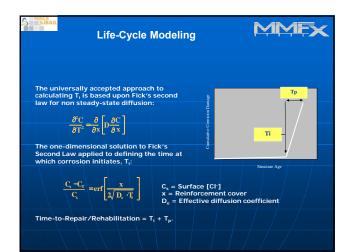
MMFX

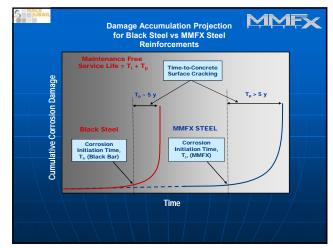
Physi	cal Properties	per ASTM A10	35/A1035M	Phys	ical Properties per BS4	1449
Bar Designation No.	Diameter, in. [mm]	Cross- Sectional Area,In. ² [mm ²]	Weight, LB/Ht [Nominal Mass, kg/m]	Nominal diameter mm	Cross Seccional Area mm ²	Mass per metre kg
3[10]	0.375 [9.5]	0.11 [71]	0.376 [0.560]	10	78.5	0.617
4[13]	0.500 [12.7]	0.20 [129]	0.668 [0.994]	12	113	0.888
5[16]	0.625 [15.9]	0.31 [199]	1.043 [1.552]			
6[19]	0.750[19.1]	0.44 [284]	1.502 [2.235]	16	201	1.58
7[22]	0.875 [22.2]	0.60 [387]	2.044 [3.042]	20	314	2.47
8[25] 9[29]	1.000 [25.4]	0.79 [510]	2.670 [3.973] 3.400 [5.060]	25	491	3.85
9[29]		1.00 [645]	4.303 [6.404]	32	804	6.31
11 [36]	1.410 [35.8]	1.56 [1006]	5.313 [7.907]	the second se		Statistics in a
14 [43]		2.25 [1452]	7.65 [11.38]	40	1257	9.86
	2.257 [57.3]	4.00 [2581]	13.60 [20.24]	50	1963	15.4

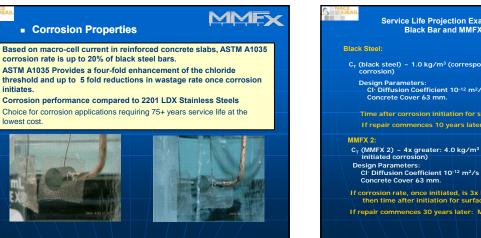

MMFX steel bars and coils are stocked and distributed in Bahrain by UNIROL Steel

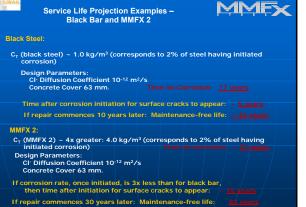






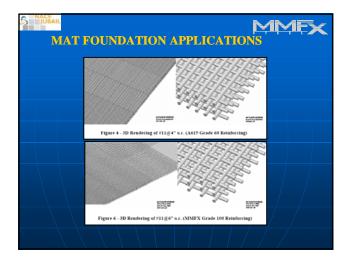




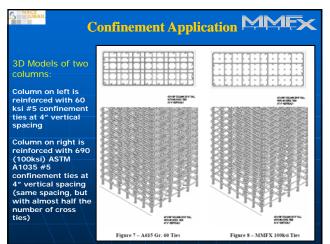


S	
	VTRC Recommendations
	"Corrosion protection for structures designed for a 100-year+ service life as currently recommended by FHWA, the report recommends that the Virginia Department of Transportation (VDOT) amend its specifications regarding the use of ECR to require the use of corrosion-resistant metallic reinforcing bars such as ASTM A1035, stainless steel clad, and solid stainless steel."
	"ASTM A1035 costs about the same as ECR but can extend the life of a deck approximately 5 times longer."
	> "ASTM A1035 is clearly the most cost-effective reinforcement for

MMFX 2 (ASTM A1035) Solution to Congestion

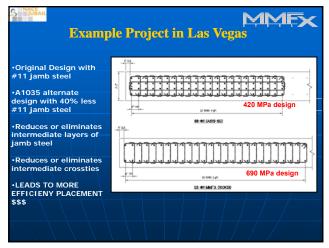

5 JUB/

MMEX


Using The MMFX 2 (ASTM A1035) Strength And Corrosion Advantages

The use of MMFX 2 (ASTM A1035) allows the structural engineer and design team to achieve the following:

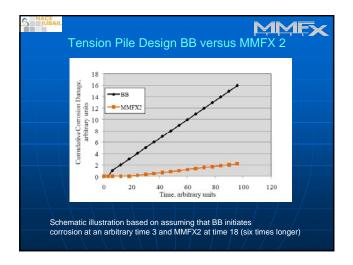
- Reduce rebar congestion (at selected structural components)
- Reduce member dimensions (e.g. mat foundation thickness)
- Improves constructability
- Extends Service Life of Structure
- Deliver project cost savings



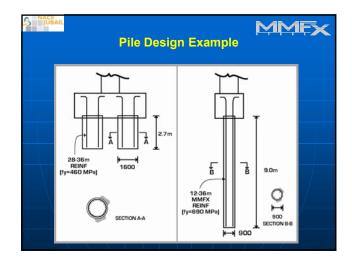
MMFX 2 (ASTM A1035) APPROVALS MINEX (Alternate Method of Construction per IBC)

- City of Los Angeles, CA (LARR)
- City of Long Beach, CA
- City of San Diego, CA
- City of Irvine, CA
- Clark County, Nevada (Las Vegas Strip)
- Miami-Dade County, FL (incl. City of Miami)
- City of Orlando, FL
- Abu Dhabi, UAE
- 🌻 JAFZA, UAE

S NAC	E BAIL							M	MĘ	×
	MAT F	OUNI				RETI A DES		INGS U	SING	
	Mat For	undatio	n Comp	arison	IS]
	Denvise Chart II	PCID	Overall Dir		A	Original Des Thick (ft)		Revised MMFX		
	Drawing Sheet IE S4 21 ALT	PC ID PC5	L (ft) 140.00	H (ft) 80.00	Area (ft^2) 11.200	Thick (ft) 14	Volume (cy) 5.807	Thick (ft) 11	Volume (cy) 4.563	
	\$4.22 ALT	PC6	143.50	69.00	9,902	14	5,134	11	4,034	
	\$4.23 ALT \$4.24 ALT	PC7 PC8	92.00 90.50	91.00 44.00		12	3,035 1,327	10.5	2,656	
	S4.24 ALT S4 25 ALT	PC8 PC9	90.50	44.00		9	1,327	7 9	1,032	
	\$4.26 ALT	PC10	95.33	80.50		10	2,842	8	2,274	
							20,156		16,066	
$\langle \rangle$							Tot	al Reduc	tion	
	* Reduction in ma	t thickness wo	ould require k	calized sh	ear reinforcin	9		4,090 cy		
								4,000 Cy		
	/ /	1 1							1 /	


Crack Width and Corrosion in Tension Pile Designs

Based upon the work of Darwin et al.,

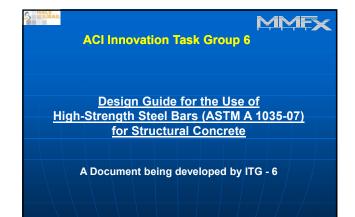

SJUBA

•A conservative estimate is that MMFX 2 reinforcement initiates corrosion at the base of relatively wide concrete cracks at exposure times about six times greater than for BB.

•Corrosion rate in cracked concrete, once initiated, is about six times less for MMFX 2 compared to BB.

Effect of Crack Width on Tension Concrete Pile Design							×
Crack Width Calculation Based on ACI 224R-01, Section 4.8 for t	tension cracking	9					
	w = 0.0145 x f	fs x (dc x A)*(1	/3) x 10^(-3)			
Tension Load	P (kN)	7000	7000	7000	7000	7000	
Pile Diameter Clear Cover	D (mm)	1150	1150	1150	1150	1150	
Clear Cover Transverse Bar Size	c (mm) dbh (mm)	16	18	16	16	16	
Vertical Bar Size	dby (mm)	36	35	36	36	36	
Vertical Bar Area	Abv (mm2)	1006	1008	1006	1006	1006	
Number of Vertical Bars	n	30	33	40	54	66	
Steel Yield Strength	fy (MPa)	690	690	690	690	690	
Steel stress Service Stress Ratio	fs (MPa) fs / fv (%)	232 34%	211 31%	174	129	105 15%	
Centroid of Vertical Bars	dc (mm)	109	109	25%	109	15%	
Effective Tension Area per Vertical Bar	A (mm ²)	21277	19342	15957	11820	9671	
Bar Spacings	s (mm)	98	89	73	54	44	
Maximum Crack Width (Tension)	w _{max} (mm)	0.45	0.39	0.30	0.20	0.16	

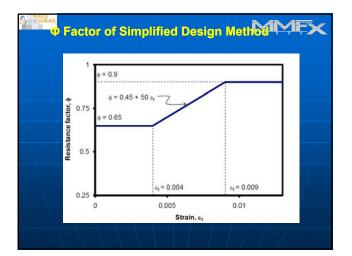
	Pile Design Ex	ample
Total Desi	gn Load of 5,000 kN Te	ension per Location
	BASELINE Design	MMFX Design
Pile diameter	1500mm diameter	900 mm diameter
Reinforcement Grade	Reinf w/ fy = 460 MPa	Reinf w/ fy = 690 MPa
Reinforcement per pile	28 – 36M bars	12 – 36M bars
Number of Pile per Loc	2	1
Length of Pile per Loc	2.7 m long	9.0 m long
Concrete Volume	9.56 m3 per location	5.72 m3 per location 40% reduction
Steel Volume	1.521 x 108 mm3 per loc	1.086 x 108 mm3 per loc 29% reducti



S JUBAIL	MMEX
Received the La	ST BAURONT STL
	ST 5-STAR CONDOMINIUM.
	se of A1035 allows flexibility in design by engineer. In this case, the
	eer chose to utilize the high-strength property of MMFX to reduce ickness of the mat foundation.
Prelim	ninary Design Info:
•Ma	at Foundation (under 1 level basement – below water table):
	•Thickness reduced by an average of 3' (2,500 cy total), at selected heavily-reinforced mats under the structural cores.
	-Reduced evenuation, have out, downtoring, concrete volume, etc.

- Thickness reduced by an average of 3' (2,500 cy total), at selected heavily-reinforced mats under the structural cores.
 Reduced excavation, haul-out, dewatering, concrete volume, etc.
 Tension Piles (36' diameter caissons):
- Total of about 370 piles supporting mat foundation. Approximately 200 would be utilized as tension piles using MMFX rebars, to resist high hurricane loading in the South Florida region.

Design Guide


- Use non-mandatory language
- Cover structural reinforced concrete members
- under low seismic regions (Category A, B $% (\mathbf{C})$ and C):
- Beams and Columns One-way and two way slab systems Walls and Footings
- Consider both strength and serviceability
- Limit application to slab systems, foundations, and
- members not designated as part of seismic-force-
- resisting system for moderate and high seismic
- regions (Category D, E, and F)
- Investigate use of high-strength bars as primary,
- secondary and confining reinforcement
- Address development length and anchorage issues

MMFX

Tension- and Compression-Controlled Limits

MMFX

ASTM A 615 Grade 600.0050.002ASTM A1035 Grade 100 Theoretical0.00660.004ASTM A1035 Grade 100 Idealized0.0090.004	STEEL TYPE	TENSION- CONTROLLED STRAIN LIMIT	COMPRESSION- CONTROLLED STRAIN LIMIT	
Grade 100 0.0066 0.004 Theoretical ASTM A1035 Grade 100 0.009 0.004		0.005	0.002	
Grade 100 0.009 0.004	Grade 100	0.0066	0.004	
	Grade 100	0.009	0.004	

S JUBAIL

CONCLUSIONS MMEX

- Building Code and Municipality Recognition
- Effective in corrosive environment application, including marine, humidity, corrosive soil, etc.
- Effective in mitigating rebar congestion
- Allows design flexibility
- Same processes:
 - Steel making (made in conventional steel mills)
- Fabrication (same equipment)
 Design (same ACI equations)
- Detailing (same bend radius)
- Installation
- PROJECT COST SAVINGS

MMFX STEEL CORPORATION OF AMERICA

Proven, Credible, Effective

Thank you

