

Crevice Corrosion within RO desalination plants – Case studies & Recommendations –

Dr. Abdelkader Meroufel

المؤسسة العامة لتحلية الميــاه المالحة Saline Water Conversion Corporation

- ➢ RO plants within SWCC
- > Materials selection for RO plants
- Crevice Corrosion record within SWCC RO plants
- Crevice corrosion research findings
- Case studies
- Recommendations

RO plants within SWCC

	. b						
	SWRO						
Plant	Design Production						
Fiant	m³/day	Operation Year					
Α	56,800	1989					
В	56,800	1994					
С	240,000	2012					
D	90,910	2000					
E	128,180	1999					
F	4400	1990					
G	4400	1989					
Н	4400	1986					

Pipe & High Grade Alloys + Energy Recovery Device + Pumps = 22%

- ✓ Materials selection for RO plants has been studied by many authors (Olsson, 1983-Oldfield, 1985, Ata Hassan, 1989, Oldfield, 1991, Oldfield, 1997,..... Larché, 2013)
- ✓ The key factor in using SS and/or nickel base-alloys in RO plants is to choose the grade the more resistant to crevice corrosion
- ✓ After replacement of the failed 316L by the excellent 254SMO, there has been a trend during the 1990s to look for less costly alternatives such as the duplex grade 2205 and the austenitic 904L. Then by super-duplex recently

Equipment	Recommended materials	
High Pressure: Piping Valves Fittings Pump Bodies-RO High Pressure Booster Pumps, ERD Pressure Booster Pumps RO Membrane Modules Energy Recovery Devices (Seawater and Concentrate)	AL-6XN, SAF 2507, 254 SMO, Zeron 100 AL-6XN, SAF 2507, 254 SMO, Zeron 100 AL-6XN, SAF 2507, 254 SMO, Zeron 100 AL-6XN, SAF 2507, 254 SMO, Zeron 100 FRP FRP3, AL-6XN, SAF 2507, 254 SMO, Zeron 100	Grade developed by Rolled Alloys (Superduplex with high W content)

Materials selection for RO plants is subject to continuous up-date based on crevice corrosion studies findings, **RO plants experience** and SS development.

SWRO materials specification in many plants is following standards such as ISO 21457 & NORSOK M-001:

Any material exposed to oxygenated seawater shall be made of seawater resistant alloy based on its **PREN which has to exceed 40**

✤ The PREN limit (≥ 40) has been derived from end-user experience (mostly in the North Sea) and a number of long-term exposure test programs.

- ✓ A materials selection strategy based on PREN alone is restrictive and can be over-conservative.Rincon-Ortiz, 2014
- ✓ No clear correlation between E_{RP}- E_{OC} and PREN was found for higher alloys such as 254SMO, duplex and nickel alloys, suggesting PRE(N) is an inadequate materials selection criterion.....*Rincon-Ortiz*, 2014
- ✓ The most important criteria of any accelerated laboratory test for localized corrosion is that it must rate alloys consistent with service performance case histories in environments that cause localized corrosion......Manning, 1983

Crevice Corrosion record within SWCC RO plants

Materials used within SWCC RO plants

Plant	HP pump							Valve				Energy Recovery Device (ERD)				
	Impeller	Са	asing	Shaft		HP p	oipe	Inlet HF	כ	Feed		Impeller		Casin	SI	naft
								pump		control				g		
Α	Alloy-20	31	16	Alloy-20		317L		Cast-Fe (C)		316L		Alloy	20	316	Al	loy 20
								-316L (D)								
В	317	31	17	317		254 S	SMO	Cast-Fe	Cast-Fe		Duplex 1			NA	N	A
С	317	31	17	317		254 S	SMO			CD4MC	u					
D	Alloy-20	31	17	Alloy-20		317L		Cast-Fe	Э	316		Hast	elloy	316L	Al	loy-20
						$\rightarrow 25$	4SMO									
E	Duplex CD4MCuN	D	uplex	2205		254 S	SMO	C-Steel		Duplex		2507				
F	317	31	17	Nitronic®	50	254 8	SMO	Cast-Fe	e(B)	317L		317		317	Ni	tronic [®] 50
			Allov	1	Cr		Ni	Мо	Mn	Cu	W	1	Ν	PREN		
			316L		16.7		10.7	2.05	1.5					23.5		
			317L		18.	2	13.7	3.1	2					33.2		
			Nitronic [®] 50		23		13.5	3	6				0.4	39.3		
		Duple CD4N	ex 25 MCuN			6	1.7	1	2.8		•	0.15	32.2			
		2750	50 2		8	6.5	3.7	0.8	0.08	1.9	99	0.2	40.2			
			254S	MO	19.	9	18	6.1	0.7	0.68	0.	05	0.2	43.2		
لحة Sali	ىسة العامة لتحلية الميــاه الما ne Water Conversion Corpo	المؤس ration	Allov	20	19		33	3	2	4				23.5		

Number of Crevice corrosion Occurrence

	ŀ	IP pump			Valve	Energy Recovery Device (ERD			
Plant/				HP					
commissioning				pipe					
year	HP	HP	Shaft		Feed	ERD	ERD	ERD Shaft	
	pump	pump			control	Impeller	Casing	A	
	Impeller	Casing						20.	
A/1990	0	3	0	8	6	0	3	0	
B/1989	2	2	2	2	2	2	2	2	
C/1986	0	0	0	0	4	0	0	0	
D/1989	0	0	0	0	0	0	0	0	
E/2012	0	0	0	0	0	0	0	0	
F/1999	0	0	0	0	0	0	0	0	

SWCC experience with crevice corrosion need rational & more strict Re-evaluation

I. Initiation Stage:

- 1. De-oxygenation of the small **amount of solution within the crevice** .
- 2. Build-up of **chloride ions and acidity within the crevice** resulting from migration effects and hydrolysis reactions respectively.
- 3. Breakdown of the alloy's protective passive film within the crevice.

II. Propagation stage:

4. Propagation of the corrosion process.

The propagation process is essentially controlled by the level of oxidizing species available for the cathodic reaction in the overall corrosion process.

Previous studies findings: cathode area (outside crevice gap) would be microfouled with biofilm formation affecting both the mixed potential and the cathodic process kinetic

Borderline attitude

NORSOK standard M-001

Rev. 4, August 2004

Alloy 625 and stainless steels with PRE \geq 40 are borderline cases and should not be used for mechanical connections without cathodic protection when their material temperature exceeds ambient North Sea sea water temperatures. Threaded connections are particularly susceptible to crevice corrosion.

SS grades with PREN above 40 are also susceptible to crevice corrosion in seawater depending on:

- 1. Crevice geometry.
- 2. Service conditions (e. g. temperature, chlorination, oxygen content),
- 3. Grade Metallurgy (e. g. cast or wrought alloys)

1. Crevice geometry.

DTRI works, 1995

Multiple crevice former: better crevice corrosion resistance performance in the natural gulf seawater for S32750 compared to S31254.

Flat crevice former: better crevice corrosion resistance of S31254 compared S32750

	S32205		S32750		S31254		S31266		N06625	
Gulf	1/5	4/5	0/5	0/5	0/5	0/5	0/5	0/5	0/5	1/5
Seawater										
(18-36 °C)										FILTE
Gasket	3	20	3	20	3	20	3	20	3	20
Pressure										
(N/mm²)										

DTRI/FCI, 2015

المؤسسة العامة لتحلية المياه المالحة Saline Water Conversion Corporation

DTRI/Ebara Works, 2007 Grade Metallurgy & service conditions

2. Service conditions (e. g. temperature)

	S32205		S32750		S31254		S31266		N06625	
Gulf Seawater (18-36 °C)	1/5	4/5	0/5	0/5	0/5	0/5	0/5	0/5	0/5	1/5
Brest Seawater (30 °C)	0/5	4/4	0/5	0/5	0/5	1/5	0/5	0/5	0/5	3/5
Gasket Pressure (N/mm ²)	3	20	3	20	3	20	3	20	3	20

Similar performance of superduplex 2750 in the two seawaters contrary to 254SMO

Locat	Parameter tion	TDS (ppm)	рН	[Cl-] (ppm)	O ₂ diss (ppm)	Conductivity (μS/cm)
	Brest	35,000	8.1±0.1	19,373	6	54,000
	Jubail	43,800	8.1±0.1	24,090	7	62,800

DTRI/FCI, 2015

SWCC failures studied by DTRI

Year:2002Part:Micro-cartridge filterComponent:Bottom face of top flange basketMaterial:904LEnvironment:Pre-treated aerated seawaterService years:2 years

Year: Part: Component: Material: Environment: Service years:

2009 Nozzles connectors Bending inlet pipe 254SMO Pre-treated aerated seawater 11 years

Year:2016Part:Nozzles connectorsComponent:Bending inlet pipeMaterial:317LEnvironment:Pre-treated aerated seawaterService years:11 years

Recommendations

- Crevice corrosion risk within RO plants need a strict assessment (consortium program could be advised including private desalination sector).
- Crevice corrosion Factors such as crevice geometry, material metallurgy need to be defined within SWCC plant.
- While 317L is largely used in SWCC old plants, its performance against crevice corrosion should define the need for a replacement by highly resistant alloy or the combination with well designed cathodic protection.
- Victaulic joints represent a location for crevice corrosion risk.
- Borderline attitude of high PREN alloys (2750 & 254SMO) should be verified through RO plants experience.
- The unification of crevice corrosion testing conditions (metallurgy, crevice geometry, seawater characteristics, test duration, type of crevice former, Anode/Cathode ratio, Surface finishing) should be followed for easy
 Comparison between findings.

Thank you For your Attention

