

Treatment of Contaminated Water Using Innovative Radiation Technology

By

Dr. Muhammad Saleem

Associate Professor, Dept of Civil Engineering

Jubail University College

(e-mail: saleemm@ucj.edu.sa)

Royal Commission for Jubail & Yanbu

Discussion Topics

Introduction

> IAEA Collaborated Research Project

- > Aim & Methodology
- Results
- Conclusions
- References

Introduction

- The International Atomic Energy Agency (IAEA) promotes and supports research on radiation treatment of liquid effluents.
- During 2006 various collaborative research projects started with member states.

Introduction

Considerations:

- •Pharmaceuticals wastewater treatment.
- •Emerging chemicals of concern.
- •Biosolids/sludge treatment.
- •RO Retentive Treatment.
- •Agricultural Production food and water.
- •Economic models development.
- •Salinity and agricultural practices.
- Innovative water treatment processes

Introduction

 A Collaborative Research Project (CRP) on Remediation of Polluted Waters and Wastewater by
 Radiation started early 2006 at
 Karachi Institute of Power
 Engineering (KINPOE).

- Various targeted pollutants studied in different phases.
- > (IAEA-TECHDOC-1407)

Rational of Using E-Beam

- The most efficient process for generating hydroxyl radicals and defining reactive species for Advanced Oxidation Processes (AOPs)
- No need of additives only the electrons
- No residuals e.g. sludge's etc.
- Reduce sludge handling cost
- Interference with the solids is low

- Rational of Using E-Beam
- Aqueous radiation chemistry is well defined.
- $H_2O \longrightarrow 2.7 \cdot OH + 0.6 \cdot H + 2.6 e^- + 0.45 H_2 + 0.7 H_2O_2 + 2.6 H^+$
- Equipment is reliable with Insulated Core Transformers (ICTs) having 98 – 99 % uptime
- > Mobile trailer may be utilize (built in 1963).
- Economical than most of the treatment methods.

Comparison of E-Beam Technology with Other Methods

	Chlorination	UV Radiation	Ozone	Electron	
				Beam	
Advantages	Enhances colour removal Least expensive disinfection	Effective against bacteria & viruses at low dosages	More effective than chlorine for inactivation of viruses.	Very effective against bacteria & viruses at low dose. Colour and taste removal Simple design feasible to large scale.	Cleaner living through electrons
Disadvantages	Forms THMs Chlorine gas is a hazardous corrosive gas.	Not efficient in large Scale Water with high calcium, turbidity & phenols may not be applicable High Maintenance cost of UV lamp.	Not efficient in large scale By-products are formed (bromide, aldehydes, ketones). High Initial cost of equipment	High capital costs	

Aim & Methadology of the project

Aim:

- An E-Beam technology utilized to decontaminate wastewater having targeted pollutants (COD, BOD & MTBE, Current study).
- Program was aimed to establish optimal treatment methodologies

Methadology:

- > A 50 KeV E-Beam (WASIK-A, Japan).
- About 850 gallon of wastewater brought from Karachi Industrial area in sealed containers.
- \succ E-Beam doses 1.22 kGy to 8.97 kGy.
- Treatment time 15 sec/gallon.
- 42 experimental runs were performed with wastewater. (US-EPA-524.2, 1992, GC/MS)

Objectives

- Efficiency of E-Beam to remove targeted pollutants including MTBE.
- System/Process Reliability.
- Check Reuse Option.
- Cost estimation.
- Safety Consideration.

> Charecteristics of Wastewater

Serial No:	Parameters	Units	Value Range	
1	рН	-	6.49 ± 0.3	
2	TSS	(mg/l)	400 ± 4	
3	TDS	(mg/l)	236 ± 2	
4	TS	(mg/l)	636 ± 6	
5	COD	(mg/l)	278 ± 2	
6	BOD ₅	(mg/l)	75± 2	
7	Alkalinity	(mg/l)	184 ± 2	
8	Amonia-N	(mg/l)	10.6 ±0.5	
9	NO ₃ -N	(mg/l)	3.2 ± 0.3	
10	Total phosphate	(mg/l)	28.3 ±1.1	
11	Total Coliform	MPN (#/100 ml)	420 ± 4	
12	12 MTBE		310±5	
13	EC	(ds/m)	0.6 ± 0.07	

Safety Consideration:

up to 0.02 mSv near nuclear installation sites world-wide average to all workers is 0.7 mSv.

Radiation level all the time was below background level (0.014-0.017 mSv)

> Results

COD Removal Effeciency

Results

100 90 87.2 85.6 80 81.4 Removal Effeciency (%) 70 72.6 60 58.7 50 40 38.7 30 20 0 120.4 2 3 4 5 6 7 8 9 Dose (kGy)

BOD Removal Effeciency

> Results

MTBE Removal Efficiency

Charecteristics of Wastewater After Irradiation & Comparison with Various Reuse Standards (Reuse Consideration)

Serial No:	Parameters	Units	Initial Value Range	Final Value	California (2009)	USEPA (2004)	PME (2001)
1	TSS	(mg/l)	400 ± 4	385 ± 2	-	5	15
2	COD	(mg/l)	278 ± 2	23.7 ± 1	25	30	150
3	BOD₅	(mg/l)	75 ± 2	9.4 ± 2	20	10	25
4	Amonia-N	(mg/l)	10.6 ±0.5	4.8 ±0.3	-	-	1
5	Total phosphate	(mg/l)	28.3 ±1.1	2.2 ±0.4	-	0.15	1
6	Total Coliform	MPN (#/100 ml)	420 ± 4	0	2.2	0	1000
7	MTBE	(mic-g/l)	310±5	6.2±2	13	20	-

- Complete treatment of wastewater required for reuse purpose
- A series of unit operations & unit processes are required.

Wastewater should be treated in a series of units to achive the reuse target

Cost analysis for E-Beam treatment of wastewater

MGD	No. of Beams*	Installed Cost	Annual Cost†	Annual Maintenance Cost‡	Annual Electrical Costs§	Annual Labor Cost**	
0.5	1	\$2,000,000	\$140,000	\$100,000	\$70,000	\$50,000	
1	2	\$3,500,000	\$245,000	\$175,000	\$140,200	\$50,000	
3	4	\$6,000,000	\$420,000	\$300,000	\$280,300	\$50,000	
10	12	\$18,000,000	\$1,260,000	\$900,000	\$841,000	\$100,000	
MGD	No.of Beams*	Total Annu	al Costs††	1000 Gallons Per	r Year Treated	\$/1000 Gallons	
0.5	1	\$360,000		182,	182,500		
1	2	\$610,200		365,	365,000		
3	4	\$1,100,300		1,095,	1,095,000		
10	12	\$3,101,000		3,650,	3,650,000		
 100 kW E-beam units at a cost of \$1,000,000 per unit. Based on 20-year amortization at 7% interest rate. Calculated at 5% of installed cost. Number of beams × 100 kW × \$0.08/kWh × 8760 hr/yr. ** One/two full-time operators at \$25/hour. † Annual Cost + Maintenance + Electrical + Operators. 							

Conclusions

- Efficiency of E-Beam to remove COD, BOD & MTBE was found to be more than 70%, 75% and 95 % respectively (dose of 5kGy).
- System availability was up to 99%.
- Treated wastewater quality compared with various standards for reuse and a treatment scheme is suggested.
- Continuous monitoring of radiation levels shows that the radiation is within permeable limits and process is safe.
- Cost analysis shows that for 10MGD cost is \$0.85/1000 G.

Some References:

- Saleem, M., M. A. Zia, and M. A. Baig. "Characterization of thin films using time of flight mass." Frontiers of advanced engineering materials (faem-06). 2006.
- Sood, D. D. (1999). Environmental Protection by Radiation Technology and IAEA Activity. In The Modern Problems of Electrostatics with Applications in Environment Protection (pp. 105-109). Springer Netherlands.
- Shani, G., & Segman-Magidovich, S. (2009). Application of Ionizing Radiation for Sludge Disinfection and Its Use for Irrigation and Fertilization. The Journal of Solid Waste Technology and Management, 35(1), 17-25.
- Cooper, W.J., Curry, R.D., O'Shea, K.E. (Eds) 1998, Environmental Applications of Ionizing Radiation. Wiley, New York.
- Hsieh, Ling-Ling, Yi-Liang Lin, and Chien-Hou Wu. "Degradation of MTBE in dilute aqueous solution by gamma radiolysis." Water research 38.16 (2004): 3627-3633.
- Kim, Tak-Hyun, Jae-Kwang Lee, and Myun-Joo Lee. "Biodegradability enhancement of textile wastewater by electron beam irradiation." Radiation Physics and Chemistry 76.6 (2007): 1037-1041.
- Basfar, Ahmed A., et al. "Radiation induced decomposition of methyl< i> tert</i>-butyl ether in water in presence of chloroform: Kinetic modelling." Water research 39.10 (2005): 2085-2095.

"There must be a reason why some people can afford to live well. They must have worked for it. I only feel angry when I see waste. When I see people throwing away things we could use."

Mother Teresa

