

Alternative oxidants in seawater industrial cooling towers for biofouling control: Effect of organics Mohammed Al-Bloushi, TorOve Leiknes

King Abdullah University of Science and Technology Thuwal-Jeddah Kingdom of Saudi Arabia

JCMEF 26-27 Apr 2017

Background

Cooling Towers

KAUST King Abdullah University of Science and Technology

JCMEF 2017, Jubail

Seawater Cooling Towers

- Behavior of oxidants in seawater
- Disinfection efficacy the seawater
- Impact of disinfectant to corrosion, scaling, DBPs, etc.
- **Discharge limits** meeting regulations

Cooling Tower Operational Issues

KAUST King Abdullah University of Science and Technology

JCMEF 2017, Jubail

KAUST King Abdullah University of Science and Technology

Bio-fouling

Open surface

Microorganisms

Algae

- Packing and filler materials
- Direct exposure to ambient air and sunlight
- Concentration of nutrients

٠

٠

Types of biofouling that exist in cooling towers

Process.

	 Loosened deposits can block and foul pipe work and other Heat exchange surfaces.
Fungi	 Proliferate to high number and foul heat exchanger Surfaces.
Bacteria	 Some types of pathogenic bacteria such as Legionella may cause health hazards. Sulphate reducing bacteria can reduce sulphate to corrosive hydrogen sulphide. Cathodic depolarization by removal! of hydrogen from the cathodic portion of corrosion cell.

Impact/on/cooling/tower/system

Bhatia, A., Cooling(Water(Problems(and(Solutions.

Brankevich, G.J.e.a., Biofouling and corrosion in coastal power-plan cooling systems. Technol. Soc. J., 1990. 24: p. 20.

Provide a nutrient source for bacterial growth.

Deposit on surface contributes to localized corrosion

6

Alternative oxidants treatment seawater cooling towers

Seawater characteristics

Parameter	Results	Parameter	Results
pH (SU)	8.13	Cadmium (mg/l)	0.00001295
Temperature (oC)	26.4	Chromium (mg/l)	0.001749
TDS (mg/l)	38,000	Copper (mg/l)	0.00005235
Conductivity (mS/cm)	60.0	Lead (mg/l)	0.00001902
Turbidity (NTU)	5.34	Lithium (mg/l)	0.03207
ORP (mV)	147	Manganese (mg/l)	0.001541
Total Alkalinity (mg/l as CaCO3)	120	Molybdenum (mg/l)	0.0001625
Total Hardness (mg/l as CaCO3)	7,500	Nickel (mg/l)	0.01628
Mg Hardness (mg/l as CaCO3)	6,300	Selenium (mg/l)	0.03042
Ca Hardness (mg/l as CaCO3)	1,200	Silver (mg/l)	ND
DOC (mg/l)	1.101	Strontium (mg/l)	5.314
UVA254 (1/cm)	0.016	Uranium (mg/l)	0.0006162
SUVA (L/mg-m)	1.4	Vanadium (mg/l)	0.0007
Bromide (mg/l)	71.0	Cadmium (mg/l)	0.00001295
Chloride (mg/l)	23,624	Chromium (mg/l)	0.001749
Fluoride (mg/l)	1.3	Total Iron (mg/l)	0.02
Nitrite as NO2- (mg/l)	0.0047	Boron (mg/l)	4.6
Ortho-P as PO4-3 (mg/l)	0.1	Sulfate (mg/l)	2,650

KAUST King Abdullah University of Science and Technology

Bench Scale

- > To evaluate different COC, Temperature and Dosage for each oxidant
- To determine the residue after 10 min decay (discharge limit)
- Study on By-product and Biological growth after disinfection

Method

- ✓ Total Residual Oxidant (TRO)
- ✓ Cycle of concentration (COC)
- ✓ Temperatures

WDRC, KAUST SABIC project (bench scale)

The Effect of Cycle of Concentration (COC) on Oxidant demands

The overall impacts of COC for all three oxidants and types were found to be very much using chorine as an illustration (as other disinfects behaviors were similar).

WDRC, KAUST SABIC project (bench scale)

The Effect of Temperature on Oxidant Demands

Different dosages and temperatures (32°C and 48°C) at constant COC of 1.2.

WDRC, KAUST SABIC project (bench scale)

KAUST King Abdullah University of Science and Technology

Comparison of Total Residual Oxidants (TRO) between the oxidants

Total Residual Oxidant decay comparison for chlorine, ozone and chlorine dioxide at 32°C and 48°C.

WDRC, KAUST SABIC project (bench scale)

Microbial Analyses Due to Oxidants - Viable Cell count

Oxidant	Dosage (mg/l Cl ₂)	Temperature				
			32.0°C		48.0°C	
Chlorine	0.1		34.3		25.2	
Ozone	0.1 (0.07 mg/l O ₃)		56.0		24.5	
Chlorine Dioxide	0.1 (0.19 mg/l ClO ₂)		19.2		8.1	
Chlorine	0.4		2.8		2.5	
Ozone	0.4 (0.27 mg/l O ₃)		2.1		1.5	
Chlorine Dioxide	0.4 (0.76 mg/l ClO ₂)		2.8		1.8	

- Oxidant is demanded when the seawater is concentrated (at higher COC).
- Comparison between the oxidants chlorine dioxide has a higher TRO values than chlorine and ozone.
- As for viable cell counts, chlorine dioxide also yielded higher disinfection rate at very low oxidant dosage.
- \checkmark Finally the bench scale study is assisting for pilot scale.

Pilot Scale

Test No	Test Program	Duration (days)	Remarks
1	Cooling Tower (CT) operation without treatment (No oxidation)	40	 COC =1.2. Disinfectant switched off. Anti-scalant dosing on. Organics spike (Me OH).
2	CT operation with Oxidant Treatment (Oxidation)	30	 COC =1.2. Disinfectant switched on. Anti-scalant dosing on. TRO = 0.2 ppm at blowdown (as Cl₂). Organics spike (Me OH).

Pilot Scale

Graphical User interface with Real Time Data Acquisition and Logic Control

Pilot Scale

Methodology

KAUST King Abdullah University of Science and Technology

JCMEF 2017, Jubail ¹⁷

Methodology

KAUST King Abdullah University of Science and Technology

JCMEF 2017, Jubail ¹⁸

KAUST King Abdullah University of Science and Technology

Pilot scale results

Biological growth

Biological growth was observed within the few days after organic (MeOH) addition.

Effect of oxidation

Set point = +600 mV; equivalent to TRO of 0.2 ppm

KAUST King Abdullah University of Science and Technology

JCMEF 2017, Jubail 21

Disinfection byproducts (DBPs)

DBPs		Unit	CT1	CT2	CT3	
Bromate (NaBrO ₃)		ppb	3	0.8	114	
Chlorite (ClO ²⁻)		ppb	5	5	4	
Chlorate (ClO ³⁻)		ppb	57	5	4	
TTHMs	Trichloromethane (CHCl ₃)	ppb	57	1	58	
	Tribromomethane (CHBr ₃)	ppb	48	0	50	
	Dibromochloromethane (CHBr ₂ Cl)	ppb	106	0	48	
	Bromodichloromethane (CHBrCl ₂)	ppb	48	2	211	

- Higher biological growth was noted at higher concentration of methanol dose, this is due to increase the organic carbon.
- Ozone and Chlorine dioxide disinfectants were an effective in keeping the microbial growth to the minimum than, chlorination.
- Ozone are effective in inactivating 97 % microorganisms, and this is followed by chlorine dioxide at 91%, whilst the conventional chlorine dosing has only 84% reduction in bioactivities.
- Among the disinfectants, Chlorine dioxide was found less DPBs formed than, ozone and chlorination.

On going research

- Testing a new seawater anti-scalant (non-phosphorus based) at Higher cycles of concentrations (COCs).
- Collaboration project with Computational Bioscience Research Center on biofouling characterization (DNA) on seawater by using a standers coupon of (C1010).
- Nutrients removal from seawater to minimize biofouling and prevent algae and bacteria growth in seawater cooling tower by using AC biofilter.

Acknowledgement

We gratefully acknowledge the financial support from SABIC (Research Project: Alternative Treatment of Seawater Cooling Tower Using Ozone Microbubbles and Chlorine Dioxide)

JCMEF 2017, Jubail

