Galvanic Cathodic Protection of Concrete Structures

David Whitmore, P.Eng., FCSCE Vector Corrosion Technologies

Concrete Repair Process

Corrosion Ravaged Bridge Columns

Levels of Corrosion Protection

Cathodic Protection	Highest level of protection intended to stop on-going corrosion activity
Corrosion Control	Significantly reducing or stopping on-going corrosion activity
Corrosion Prevention (Cathodic Prevention)	Preventing new corrosion activity from initiating

Cathodic Protection

- Address active corrosion
- Reduce corrosion rate to approximately zero
- Typical applied current: 5 to 20 mA/m²
- 100 mV+ potential shift

Corrosion Control

- Address Active Corrosion
- Significantly reduce corrosion rate
- Typical applied current: 1 to 7 mA/m²
- Research has shown that as little as 1 mA/m² achieved 96% reduction in delamination growth

Corrosion (Cathodic) Prevention

- Mitigate the <u>initiation</u> of corrosion
- Current density required is lower than amount necessary to stop on-going corrosion activity
 - Research has shown that 0.25 to 2 mA/m² is sufficient to prevent corrosion initiation
- New Construction
- Repair

Corrosion Protection

- Current Provided to the Reinforcing Steel
 Impressed Current Systems
 - Galvanic Systems
- Both Types of Systems can Provide Corrosion Protection to Steel in Concrete

Abutment Repair Detail With Galvanic Protection

I-75 Ohio DOT

Forms installed

192

Completed repair

Kirkwood Road – Monitoring Protective Current and Temperature

Kirkwood Road Monitoring

Date	Temp	mA/m2	Polarization	
5/6/05	(C)	37.7	(mA)	
7/20/05		13.9	346	
8/16/05	31	12.9	333	
10/26/05	12	5.4	394	
12/7/05	11	3.2	339	
5/1/06	14	7.5	335	
12/20/06	4	4.3	500	
5/30/07	26	7.5	446	
9/20/07	24	9.7	484	
12/09/08	4	3.3	470	
7/9/09	23	3.3	475	

Galvanode[®] Galvanic Protection System for Concrete Piles in Marine Environment

Robert Moses Causeway Long Island, NY

Cathodic Protection: Robert Moses Causeway

- Contract Specified Monitoring for 1 Year
- Temperature has varied from -10C to 25C.
- Current has varied from 17 to 55 mA.
- Current Density: 4.0 to 12 mA/m².
- Polarization: 128 to 297 mV.
- System meets all CP Criteria.

Pile Cap Repair

- 2,000 meters of pile cap repair
- Remove bottom 20 cm
- Install distributed strip anodes
 - 4 cm x 4 cm x 2.5 m
- Form and Pour Repair

Parking Garage

Bridge Widening

111111

Leister Bridge Cross Beam

Completed in 1999Monitored for 10 years

10 Year Monitoring - Current

Current Density

- Cathodic Prevention
 - European Standard EN 12696
 - Current Density 0.2-2mA/m²

- Leister Bridge
 - Ranged 0.6 mA/m² and 3.0 mA/m²
 - Overall mean of around 1.4 mA/m²

Zinc Consumption

Calculated based on current output and 85% utilization

Forensic Analysis after 10 yrs

Encasing Zinc Extent of pores Mortar containing white corrosion corrosion product products **Bright Zinc** substrate (top darker layer scraped off) Coherent Zinc interface substrate Repair Uncorroded mortar tie wires

(b)

(a)

Anode Connection to Reinforcing Steel

Preventative Galvanic Protection with FRP Strengthening

Galvanic Anodes in New Construction

- General Protection
- Targeted protection
 - High chloride exposure
 - Critical structural elements
 - Construction joints

Catano Ferry Terminal

First Green Building in Puerto Rico as certified by as LEED
2nd ferry terminal in the USA certified by LEED
Construction Complete 2012

\$22.5 million ferry terminal in Catano
Replace the existing 35 year old terminal
4,600 passengers daily

Catano Ferry Terminal

- Galvanic Anodes used for Cathodic Prevention
- Piles
- Beams
- Columns

Summary

- Large Range of Corrosion Mitigation Options Available
- Mitigation Strategies can be
 - Global, Targeted, or Localized
- System Selection
 - Existing Condition, Exposure Conditions, Service Life Required, Budget, and Maintenance Considerations

