NACE Jubail Technical Meeting

05-01-2010 Daido Steel Co.,Ltd Daido's New Materials for Petrochemical industry And Energy industry

EST (Ethylene Super Tube)
BST (Boiler Super Tube)
DSA760 (Ni-38Cr-3.8AI)

EST (Ethylene Super Tube)

Ethylene Furnace

Introduction

History of radiant coils for ethylene pyrolysis furnace material:

A constant struggle for longer life & run length at higher temperature & severity

			▶ 2007	
18Cr-8Ni (304) 25Cr-20 (310)	25Cr-20Ni (HK) INCO 800	25Cr-35Ni (HP)	25Cr-35Ni-Nb (HP-Nb) 35Cr-45Ni	->

Our Solution: EST (Ethylene Super Tube) = PPW (Plasma Powder Weld) Overlaid Tube

Base Tube

-Material: Conventional (HK, HP-Nb, 35Cr-45Ni, etc.) Centrifugally cast (Daido)

PPW layer

- Material: 45Cr-50Ni-1Mo Gas atomized & PPW'd (Daido)
- Thickness: 1 3 mm

Main Benefits

- Anti Catalytic Coke
- Anti Carburization

PPW (Plasma Powder Welding)

Anti-Carburization

The PPW layer stops carburization into the base tube by the "Dam-Effect".

Furnace A: Naphtha Feed

Samples taken after 9 years of operation

Appearance of EST (After 9 years)

Green colored surface is recognized. (same as the sample after 24 months)No-erosion or damage is observed.

DAIDO STEEL CO., LTD.

EPMA (Electron Probe Microanalysis)

Actual Carburization Comparison

Mechanism of Dam-effect

"Dam-effect" can only be expected in the clad tubes, not in solid tubes.

Lack of carburization in EST can prevent physical distortion and help maintain stable operation.

Anti Catalytic Coke

An Fe free, Cr-oxide film on the PPW layer reduces catalytic coke formation with "Self Healing Effect".

Coke Resistance

Metal coupons in hot gas stream accumulate coke as experiment proceeds. Coupon EST is prepared by PPW process

Simulated process gas environment

96hrs 192hrs 500hrs

Furnace B: TMT (Flat means less coke formation)

Furnace C/D: Gas Feed

Furnace C:

EST used for 50% of full coil

Furnace D: Identical furnace with 35Cr-45Ni

Furnace C/D: Pressure Drop (Flat means less coke formation)

Lower pressure increase continue through years by "Self Healing Effect" of EST

Surface composition mapping of <u>35Cr/45Ni</u> after 3.3 years

Near ID surface

Surface composition mapping of EST after 9 years

Near ID surface

DAIDO STEEL CO., LTD.

EPMA (Electron Probe Microanalysis)

Mechanism of Self-healing

Due to high Cr in the PPW layer, surface Cr_2O_3 can be re-created and reinforced after each decoking cycle: "Self-healing effect"

Summary

EST has,

- Extremely high carburization resistance
 - à Extended tube life (Twice or more)
 - à Ability to run at higher severity
 - à Maintained ductility (can survive emergency shutdowns)
- Suppression of catalytic coke formation
 - à Extended run length (Twice in ethane furnace)

Higher pricing than conventional tubes, but Pay back In a year can be expected.

(EST is in operation at over 10 commercial plants)

BST (Boiler Super Tube)

Outer surface overlay

Overlay and bending

Benefits of BST (Boiler Super Tube)

Plasma Powder Welding

BST Production Line

Original metal powder

Anti-corrosion to corrosive fired gas in high temperature

Higher steam temperature for Higher efficiency of power generation

History of **BST** (Boiler Super Tube)

1960-1964	Union Carbide Co. in USA developed welding
	application of plasma energy and powder metallurgy.
1973-1991	Daido Steel developed automatic Plasma Powder Welding
	(PPW) equipment for engine valves.
	Plasma arc generator, gas controller, powder metal feeder, and particle size control were patented by Daido.
1992-	More than 150 PPW equipment for engine valves have
	been shipped to automotive engine valve manufacturers.
1994-	Daido developed Boiler tubes with PPW overlay for the
	waste to energy plant through a Japanese National Project
1998-	Daido started commercial manufacturing of boiler tubes
	with PPW overlay as 1 st Generation Boiler Super Tube
	"BST276, BST625" for Japanese waste to energy plants.
	Daido developed new process for PPW overlay on the
	inner surface.
2009-	Daido developed New "BST1" for higher temperature operation.

1st generation "BST 276 and BST 625"

(Steam Temperature: ~400°C)

Chemistry of Weld overlay (typical)

(wt%)

	С	Si	Mn	Ni	Cr	Мо	Со	W	Fe
BST276	0.01	0.8	0.2	Bal.	20.8	13.2	2.2	3.1	1.0
BST625	0.01	0.2	0.1	Bal.	21.8	9.2	2.0	-	1.2

Actual corrosion depth in the waste to energy plant (550°C x 6000 hrs)

(Ref.) Mechanical Properties of Boiler tubes

STB340 + H-276M(PPW)					
R.T.					
T/S EI					
Base tube	620	28.8			
With PPW 601 41.2					

(Base 5m/m + PPW 2m/m)

Applications of "BST625 and BST276" in Japan

Base tube	Size	OD:		
	Grade	STB340, STB410, SUS310J1		
PPW	Thickness 2 - 2.5 mm			
overlay	Grade	276 modified, Inco625, 625modified		
Installation	24 Waste to Energy Plants in Japan (Locations: Tokyo, Osaka, Nagoya, Hokkaido, Tochigi, Kyoto, Kagawa, Toyama, Chiba, etc)			
Remarks	Over 8000 pcs are in operation now. Maximum years in operation is 9 years. (2009)			

New generation "BST1" for higher temperatures and longer tube life

(Steam Temperature: over 400°C)

(1) Chemistry of PPW overlay

								(
	С	Si	Ni	Cr	Мо	Со	W	Al
BST1	Ad.	Ad.	Bal.	27	-	-	Ad.	Ad.
BST625	0.01	0.8	Bal.	22	9	2	-	
BST276	0.01	0.2	Bal.	21	13	2	3	

 $(\sqrt{10})$

(2) Concept of BST1

- Chemistry of BST1 is originally developed and applied for commercial Air-heater for Gasification and Ash Melting System. (Metal temperature: 800°C (1,142°F))
- Higher corrosion resistance with higher Cr than BST625 or BST276.
- Higher W than BST276 prevents the formation of Cr-depleted zones.
- Added Si, Al prevent corrosion by Cl through grain boundaries.

- Adequate C makes fine grains to protect against corrosion through grain boundaries.

Results of Corrosion Test

JIS Z 2293

Methods for high temperature corrosion test of metallic materials

by dipping and embedding in molten salts

	Mol. %	Wt. %			
Na ₂ SO ₄	3	16.8			
K ₂ SO ₄	3	20.6			
Fe ₂ O ₃	2	12.6			
PbCl ₂	3	28.15			
FeCl ₂	3	12.85			
NaCl	2	3.95			
KCI	2	5.05			

Salts

Dipping temperature and time

°C	400	600	800	
٥F	752	1,112	1,472	
time	100 hours			

Weight loss

Weight loss of BST105 at 800°C is remarkably smaller than BST276 or 625

Appearance after the test

	400°C x 100 h	600°C x 100 h	800°C x 100 h			
BST1						
BST625						
BST276						
Almost no corrosion of BST1 even at 800°C						

Conclusions

- With higher contents of Cr, W, Al, and Si (with no Mo and Co), a new generation BST1 has been developed.
- A high temperature (800°C or 1,472°F) molten salt test revealed higher corrosion resistance of BST1 as compared with BST276 or BST625 against oxide and chloride formations.
- BST1 is expected to enable higher steam temperatures with longer tube life, resulting in higher efficiency for waste to energy plant operation.

DSA760 (Ni-38Cr-3.8Al)

Characteristics

- High hardness in AG condition by precipitation of α Cr and γ ' phases
- Wear resistance comparing with AISI 440C
- Corrosion resistance in comparable with AISI 316
- Easy to machine and cold work in ST condition
- Non-magnetic

Development History of DSA760

1972 (Japan) Ni-40Cr-4AI (mass%) was developed by Toshiba for gas turbine parts, which had high hardness and good corrosion resistance.

1974 (Russia) Ni-40Cr-3.8AI was introduced as high hardness and non-magnetic permeability alloy in a Russian paper.

1990 (UK) Ni-40Cr-3.8AI was introduced again as the Russian Ni alloy and applied to a non-magnetic pressure cylinder.

Manufacturing process was cast due to low hot workability.

1999 - (DAIDO)

DSA760 was developed for forging and rolling process to product many kind of products for every industry by Daido process technology

Hardness and Corrosion Resistance

Ageing Hardness

Ageing Temperature (°C /16hrAC)

Mechanical Properties at R.T.

Tensile properties

Charpy Impact Value

Microstructure after ST-AG

SEM images

Solution treatment (ST) : 1150deg.C x over0.5hr / WCAging(AG) : 550deg.C x over16hr / AC

Hard phase consists of lamellar α Cr and γ/γ' phases $\gamma' : Ni_3Al$

Hot Hardness

Wear Resistance

Pin-on-disc wear test

Acid Corrosion Resistance

Hot Corrosion Resistance

Hardness and Magnetic Permeability

Examples of Application (Tools)

High hardness (High temperature)Excellent corrosion resistance

Weld Overlay by DSA760

Overlay:55HRC

Die tool to

Hot die

Base:36HRC DAC3

Examples of Application (Wire, Bearings)

High Strength Wires Dot pin, Dental tool Non-magnetic Bearings Magnetic Resonance Imaging System (MRI) Electromagnetic Clutch

Wire (0.3mm in diameter)

Bearings

Thank you so much for your attention

ARIGATOU GOZAI MASHITA !!

Questions?